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Existing tactile stimulation technologies powered by small actuators
offer low-resolution stimuli compared to the enormous mechanore-
ceptor density of human skin. Arrays of soft pneumatic actuators
initially show promise as small-resolution (1- to 3-mm diameter),
highly conformable tactile display strategies yet ultimately fail be-
cause of their need for valves bulkier than the actuators themselves.
In this paper, we demonstrate an array of individually addressable,
soft fluidic actuators that operate without electromechanical valves.
We achieve this by usingmicroscale combustion and localized thermal
flame quenching. Precisely, liquid metal electrodes produce sparks to
ignite fuel lean methane–oxygen mixtures in a 5-mm diameter, 2-mm
tall silicone cylinder. The exothermic reaction quickly pressurizes the
cylinder, displacing a silicone membrane up to 6 mm in under 1 ms.
This device has an estimated free-inflation instantaneous stroke
power of 3 W. The maximum reported operational frequency of
these cylinders is 1.2 kHz with average displacements of ∼100 μm.
We demonstrate that, at these small scales, the wall-quenching
flame behavior also allows operation of a 3 × 3 array of 3-mm di-
ameter cylinders with 4-mm pitch. Though we primarily present our
device as a tactile display technology, it is a platform microactuator
technology with application beyond this one.

soft electronics | haptics | combustion | microactuator | microfluidics

Through the senses, human beings constantly gain rich informa-
tion about the external world; ultimately, everything one knows

comes from what one first learns through one’s sense powers (1).
Though sight is generally considered to be our strongest sensorial
asset, touch (pressure, pain, vibration, temperature, etc.) intimately
connects us with our nearby environment and our own bodies.
Touch is, perhaps, more necessary for survival than any other
sense (2–8). It is unsurprising, then, that our skin is our bodies’
largest organ (9, 10), comprising in part a diverse array of mech-
anoreceptive organelles, allowing people to feel skin deformations
of different types, durations, and intensities (11). For example, human
fingertips have over 200 mechanoreceptive units per square centi-
meter (10), perceiving static deformations of down to 0.1 mm (12)
and vibrations of up to 400 Hz (10, 13).
Despite the importance of touch, our visual and auditory senses

dominate the experience of digital information. The most proliferate
form of haptic actuation is vibrotactile, but this technique does not
allow the type of displacement and persistence of touch required to
provide a natural experience. Vibrations alone cannot meaningfully
recreate the pressure felt from a bag on the shoulders or the impact
of a ball caught in the hands. Because of this lack of haptic expe-
rience, at least two societal needs remain unfulfilled: artificial touch
recreation in immersive virtual reality (VR) and braille displays that
compete with analogous visual media. For braille, specifically, there
are no full-page, affordable, portable, refreshable displays on the
market (14).
The dearth of available tactile display options is not from lack

of trying; manufacturing arrays of actuators at the size and density
suitable for reading computer information from a tactile screen
requires reducing actuator volume, weight, power draw, and cost,

all together. The diverse set of designs conceived to achieve this
haptic challenge have employed an equally numerous suite of
physical principles, and each actuation method has presented its
own failure mode (14). For example, thermal actuators usually
take seconds (without thermal management accessories) (15) to
finish a work loop because of heat transport limitations (16).
Pulsed electromagnetic systems suffer from low actuation forces
and interference between individual actuators (crosstalk) when
made close to the size of a braille dot (17). Piezoelectric devices
have large production costs at scale (HyperBraille systems cost
∼$50,000), also needing long cantilevered geometries that im-
pede their ability to be densely arranged (14, 18).
Fluidic elastomer actuators (FEAs) displace rubber forms with

liquids and gases, showing promise as dense actuator arrays be-
cause of their manufacturing simplicity and favorable mechanical
characteristics (19). An elastomeric membrane ∼1 mm in diame-
ter can displace more than 0.5 mm as was previously shown by ref.
20 in which a 1.5-mm diameter viscoelastic membrane displaced
0.56 mm in about 1 s. Beyond simplicity, these soft haptic devices
also have the convenient ability to conform to complex body
shapes (21). For example, HaptX has developed a commercial,
tethered VR glove technology that integrates 130 individually
addressable fluidic actuators into each glove (22). This paper’s
lead author has experienced this technology and testifies to its
natural feel (23). As designed, the glove’s microfluidic channels
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are tethered to a large box housing a pump and many valves,
limiting the user’s range of motion. One major deficiency of FEAs
is how the system scales with actuator number density: there is
generally a linear relationship between the number of valves and
actuators. As electromechanical valves are themselves actuators,
the size, weight, power, and cost (SWaP-C) requirements of FEA
arrays soon become untenable for portable tactile display systems.
For example, the most popular valve choice for FEAs is the Parker
X-Valve, with dimensions of 7.87 × 23.37 × 12.30 mm3 at a unit
cost of ∼$40 (24); if a single, six-dot braille cell (∼6 × 10 ×
10 mm3) was controlled by six valves, that is, one valve per actu-
ator, the array of valves would take up 18.4 times the cell area and
cost $240 (14). Though there are multiplexing solutions to the
valving challenge (25), we are currently unaware of any high-
resolution tactile interaction being enabled by these methods.
Counterintuitively, microscale combustion could provide an al-

ternative actuation motif for haptic arrays, given its own engineering
tradeoffs. Combining high-energy density fuels (26, 27) with small-
volume mechanical elements results in a potentially safe and en-
during actuation mechanism. Previously, microscale combustion
research primarily focused on replacing batteries with high–power
density micro-electromechanical systems (MEMS) thermoelectric
generators (28). These systems may have failed to become prac-
tical because of unwanted flame extinction, thermal degradation,
and frictional wear (29). More recently, combustion has been used
in FEAs for macroscale soft robots and pumps (30–34). A spark
ignites a combustible gas mixture that rapidly heats the product
gas and expands the soft FEA cavity to move a robot or separate
fluid. This research direction, however, has not been previously
expanded into the realm of small gas-powered FEAs (35).
In this paper, we make two contributions: 1) the use of combustion

in microliter-scale FEAs for powerful, high-stroke, millimeter-scale
actuations and 2) the exploitation of rapid thermal quenching at
these scales to individually actuate fluidically coupled arrays
without valving. As we no longer need valves, we can space the
actuators more closely because their flow and electrical control
components occupy less area than the actuator footprint. Pri-
marily composed of molded silicone and microfluidic liquid
metal (LM) traces, our design is an inexpensive, thin rubber
sheet that provides more favorable SWaP-C scaling than prior
FEA systems. We elementally characterize our device’s me-
chanical performance as a general microactuation strategy. As
tactile display systems represent one of the oldest, broadest, and
most contemporary microactuator research initiatives, we focus
our discussion and demonstration on this system’s potential to
serve a similar purpose.

Results
Single-Cylinder Actuator Design Rationale. Fig. 1A shows a rendered
schematic of our single-cylinder actuator. A 2-mm thick, molded layer
of polydimethylsiloxane (PDMS; Sylgard 184, Electron Microscopy
Sciences, Inc.) contains the geometries of the actuation cylinder, gas
delivery channels, and LM electrode channels. A 1-mm thick bottom
layer seals the cylinder and channels. Including the outer substrate,
this device has dimensions of 40 × 65 × 3 mm3; we include excess
PDMS at the base layer for ease of handling. We bond a 7-mm
diameter, 0.5-mm thick hyperelastic (Ecoflex 00–30, Smooth-On,
Inc.) membrane to the top of the cylinder with a silicone epoxy
(Sil-Poxy, Smooth-On, Inc). Assembly steps can be found in SI Ap-
pendix, Single Cylinder Actuator and Arrayed Actuator. Our choice of
PDMS in these actuators stems from its thermal stability (silicones
can withstand constant temperatures above 150 °C) (30, 36), large
strain to failure, toughness, and cycle lifetime (30, 33, 37). PDMS
has previously been shown to survive the elevated temperatures
and pressures of larger, soft, combustive actuators (30, 32, 33).
To embed the spark gap electrodes, we inject liquid gallium

(single actuator) or EGaIn (arrayed actuator) into the PDMS
substrate (Fig. 1 A, Inset). These LM options perform equally well

in both cases and are useful to retain high device elasticity. LM
also simplifies our device construction, as it functions both as the
spark gap electrodes and internal conductive traces. Fortunately,
the oxide layer that forms on the LM surface helps stabilize the
exposed liquid metal electrode surface during bending and
combustion (38).
While LM has a higher resistivity (ρGa ∼10−7 Ωm) than metals

typically used in conventional circuitry (ρCu ∼10−8 Ωm) (38), it is
still a good choice for our design. The higher resistivity is less
important, as our device is primarily electrostatic; only electric
breakdown causes charge to flow. Specifically, considering the
parallel plate capacitance C of two closely spaced flat wire ends,
the time to spark formation can be estimated as tc ∼ RC (R is
resistance). Then, copper traces will take 12% the time to charge
as gallium traces since ρCu/ρGa = 0.12. Assuming a total input
impedance of 1 kΩ, tc,Ga ∼ 1 ns. Therefore, the relatively low LM
conductivity does not impact the practical operation of this de-
vice, making LM an overall better design choice than solid me-
tallic conductors. As repeated electrostatic discharges tend to
erode and foul solid electrodes (39), LM provides an additional
benefit in that the electrodes could potentially heal themselves
or be replenished by injecting more LM.

Actuator Operating Principle. Our actuator functions similarly to
that of pistons in an internal combustion engine (ICE)—a spark
ignites a gaseous reactant mixture to heat and rapidly expand gas
to perform work (40). For our soft ICE, we chose to use methane
and oxygen, which globally react according to Eq. 1, and from
this reaction, release 55 kJ of heat per gram of methane con-
sumed (includes exothermic water condensation, SI Appendix,
Actuator Stroke Efficiency):

CH4 + 2O2 →CO2 + 2H2O(l). [1]

At the instantaneously high pressures generated by this reaction,
the open exhaust port restricts but does not prevent gas outflow
as the membrane stretches upward. Schlieren imaging of exhaust
flow (SI Appendix, Fig. S7) shows the exhaust gas pluming after
actuation begins. Though prior research has shown that passive
elastomeric check valves can trap exhaust gases only during com-
bustion (30), our simpler design is easier to fabricate at small
scales. Therefore, we sacrifice efficiency for architectural sim-
plicity and high-resolution actuator density. Individual actuation
events are controlled by ignition through the LM electrodes.

Experimental Performance Characterization. The free inflation
(Fig. 1B) and deflation of the hyperelastic membrane provides a
visual basis to estimate the actuator’s mechanical performance
envelope. The energy released during combustion depends on
the proportion of methane present in the mixture, expressed by
the equivalence ratio Φ (40):

Φ =
mfuel/moxidizer
( )

actual

mfuel/moxidizer
( )

stoich

, [2]

where m refers to the mass. When all fuel and oxidizer convert
into products, the reaction is considered stoichiometric: Φ = 1.
Combustion reactants at Φ < 1 are referred to as lean mixtures.
We report actuator performance for Φ ∈ [0.20, 0.34]. We esti-
mated the membrane stretch λp and normalize volume change
ΔV(t)V0

−1 over the different Φ’s using high-speed video (Fig. 1 C
and D). At Φ = 0.34, ΔVmaxV0

−1 = 3.05 and λp = 4.1. These
quantities contribute to a first order energy output estimate,
the total membrane stroke work of combustion, Ws, defined be-
low as the (neo-Hookean) strain energy Ψ increased in the mem-
brane from combustion (41–43):
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Ws = Ψ = μ

2
(2λ2p + 1/λ4p

− 3)Ah. [3]

From our analysis, we estimate that this device produces a
maximum stroke work Ws = 1.7 mJ and maximum instantaneous
stroke power output Ps = 2.9 W. We report power in this manner
to highlight the explosive energy release during actuation. For
example, the average velocity of the strongest upward stroke
(Fig. 1B) is 10.8 m · s−1. A power estimate averaged over cycles
of actuation would include idling periods and is significantly
lower. Reactant gas flowing at 1.2 mL · s−1 (Φ = 0.28), sparking
at 10 Hz, produces a power output of ∼2.7 mW. For tactile dis-
play applications, the stroke power more accurately reflects the
overall performance since it incorporates both actuator energy
output and the response time into one number; the latter mea-
sure is also important for future, higher fidelity VR haptic feed-
back technologies. We set our results in context through Fig. 1E,
compiling estimated stroke power outputs from peer-reviewed
publications that report sufficient experimental data (geometry,
force, displacement, and response time) (16, 17, 19, 20, 44–60).
Consult SI Appendix, Details on Actuator Performance Compari-
son and Table S1 for literature comparison details.
We obtained the experimental actuator frequency response

curves shown in Fig. 1F by sweeping sparking frequencies up to
1.2 kHz while maintaining constant input gas flow rate and
stoichiometry. Even at these high frequencies, we were able to
measure displacements of >100 μm despite the reduced reactant
gases present in the cylinder. For comparison, a single spark plug
in an ICE running at 3,000 rpm ignites new fuel–air mixtures at
25 Hz. We far exceed these operational frequencies as our sys-
tem does not have valve-timed processes. New gas enters the

cylinder during the current actuation and quickly becomes
available for the next ignition because the electric discharge path
is located directly in front of the intake port (Fig. 1 A, Inset). As
we limited our premixed fuel flow rates for experimental safety
purposes, we could likely increase the actuation frequencies
beyond 1.2 kHz for less safety-constrained applications.
The vertical lines in Fig. 1F represent the frequencies at which

reactant gas can refill the cylinder volume for two experimental
volumetric flow rates Q of 1.2 and 2 mL · s−1. Ideally, all sparking
frequencies fsp less than the corresponding “filling frequency”
ff = Q V0

−1 would produce displacements of the same amplitude.
In reality, we observe both a drop in the average displacement
amplitude and an increase in the peak displacement variance for
fsp < ff (Fig. 1F). Further investigation of individual measurements
taken at intermediate frequencies (tens of Hertz) reveals a stable
sawtooth pattern (SI Appendix, Experimental Frequency Response
Analysis and Fig. S14). We proceeded to develop a linearized
fluid–structure interaction (LFSI) model to rationalize this experi-
mental anomaly (assuming uniform, instantaneous species mixing).
This model did capture many features of our frequency response
experiments, even showing a subtle displacement variance ∼0.1×
the magnitude of experimental measurements. From our initial
simulations, we believe that some ambient or exhaust gas is sucked
back through the exhaust port into the cylinder due to a mo-
mentary negative pressure differential generated by rapid gas
cooling and membrane over-deflection into the chamber during
deflation (SI Appendix, Linearized Fluid-Structure Interaction
Model (LFSI)). Further analysis incorporating inlet gas dynamics
and nonlinear elasticity may lend a more complete explanation
of our experimental observation.
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cylinder edge (Inset), their exposed surfaces forming the spark gap. (B) High-speed photography captures fast dynamics of single-cylinder actuation strokes.
(Scale bar: 3 mm.) (C) Image analysis from high-speed videos shows that methane–oxygen combustion reaction rates increase sharply as Φ rises. (D) Maximum
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Microliter Fuel–Oxygen Combustion Mechanics. Methane–oxygen
combustion plays a dual role in generating our device’s powerful
actuations. Firstly, using pure oxygen allows for reactant mix-
tures to have higher energy densities than methane–air mixtures.
A stoichiometric methane–air mixture has the same mass of
methane as a methane–oxygen mixture at Φ = 0.21. Secondly, the
reaction kinetics of fuel–oxygen mixtures result in a faster flame
and hotter product gases, as less inert gas is present to absorb heat.
Fig. 2A supports these intuitions with data from simulations of
unconfined laminar methane–air and methane–oxygen flame
propagation (61).
Because our actuator cylinder has a relatively high surface-area-to-

volume ratio, flame–wall interactions also affect flame propagation
behavior. Recent deflagration-to-detonation (DDT) investigations
have gained significant insights into how the boundary layer pro-
motes flame acceleration in narrow, closed-end tubes (62–67). To
contrast, the first order combustion theory most successfully pre-
dicts flame behavior when it is relatively unconfined and moves at
the laminar flame speed (Fig. 2B). We examine the validity of
laminar flame assumptions by comparing experimental data with a
laminar flame propagation (LFP) model, further contextualizing
our results (Fig. 2C and SI Appendix, Laminar Flame Propagation
Model (LFP)). That the experimental data most closely fits the
timescales from the LFSI lends credence to our claim that the
flame accelerates in the cylinder immediately following ignition.
Design features like asymmetric electrode placement, open

port configuration, and a hyperelastic boundary layer limit how pre-
cisely current DDT theory can explain our experimental observations.
Yet, simulations show transitional flame behavior occurring in
tens of microseconds because of narrow tube wall friction (62–65),
aligning well with our measurements (63), assuming that in our
device the reaction completes no later than when the membrane
begins its motion. The simulations also demonstrate the role that
internal acoustic reflections play to further the acceleration. We
do not claim that detonation occurs in our device; however, higher
stoichiometries result in combustions that produce a sharp, loud
snap. It is possible that the cylindrical actuator wall encourages
constructive acoustic interference in the reacting gas.
The continuous-flow combustion processes we use are prone

to flashback in which flames faster than their feed gas velocity
proceed upstream toward the fuel source. Flashback in industrial
equipment like oil pipelines and oxyacetylene welding rigs poses a
serious safety risk, especially when backpropagating flames cause
sharp pressure spikes in the gas tanks or fuel lines. Preventing
flashback requires a design feature—a flashback arrester—that
absorbs enough heat from the flame to cool it below a self-sustainable
temperature, terminating the combustion reaction. Sir Humphry

Davy discovered a mechanism whereby a propagating flame
quenches itself when confined by a metal mesh of sufficiently
small pores (68), establishing a principle for the future design of
flashback arrestors. The small port geometries naturally exhibit
this principle for our lean oxy–methane mixtures. Yet, when Φ >
0.34, ignition produces stronger flames that proceed backward
through the entire device.
Later investigations into porous flame quenching have shown

that high-speed flames violate Davy’s principle; thick flame ar-
resters with even smaller pores are needed to slow, depressurize,
and quench more energetic flames (69). We incorporate this more
substantial flame arrestment method into our array prototype
(Fig. 3A) by embedding a single 1.5-mm thick sintered metal disk
(1000840-01-020, Mott Corporation) in the central junction of the
fuel channels. The disk also diminishes traveling pressure waves
from individual combustions, thus reducing unwanted crosstalk.

Arrayed Actuation System. To translate the single actuator design
into a scalable arrayed device, we separate cylinders, electrodes,
and gas channels into four layers; putting each of the components
under the cylinder frees space on the top layer to bring actuators
more closely together. The footprint of each cylinder is larger than
the gas and electrode channels, enabling us to directly integrate
these components (Fig. 3B).
LM electrode channels occupy the bottom two device layers,

where one widthwise channel crosses over one lengthwise channel
under the center of each cylinder. The high-voltage (HV) control
relays are set to normally open, leaving each trace electrically
disconnected as the array idles. Individual actuations are triggered
by setting the widthwise channel to +V (∼2 kV) and the length-
wise channel to ground. Wires that pierce through the bottom of
the cylinder into each electrode channel carry charge and cause a
spark in front of the fuel intake port (SI Appendix, Fig. S3). Thus,
we demultiplex the electrical inputs of this system by controlling
the voltage of electrode rows and columns, not the individual
actuators. To prove this concept, we first verified that each actu-
ator works independently by manually triggering HV relays to
ignite fuel in each of the nine cylinders. High-speed video cap-
tured individual membrane inflation and deflation cycles (Fig. 3C
and SI Appendix, Fig. S9 and Movie S5).
To produce sustained deformations required for effective tactile

displays, we connect our prototype array to a set of magnetically
latching pins. We use the HV relays (controlled by an Arduino
Uno) to trigger combustion sequences of prescribed braille and
English text outputs (Fig. 3D and SI Appendix, Fig. S10). The
transient pressure pulses push the pins upward to remain in a
raised state because of the magnetic latches. After each actuation
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sequence, we reset the raised latching pins by manually pressing
them back down. Because the relays were directly connected to
the Arduino with no filtering components, leakage currents from
electrical breakdown occasionally interfered with the microcontroller
clock cycles (SI Appendix, Arrayed Actuator and Spark Demultiplex
Control Electronics), artificially increasing the overall array actu-
ation timescale compared to the 5-ms pin motion time.

Discussion
We have designed, manufactured, and characterized an actuation
system, simply composed of molded silicone and microfluidic LM
traces, that releases energy from microliters of fuel to repeatably
generate membrane pulses above 1 kHz up to 2.9 W of power.
Our actuator array exceeds the current Pareto front (energy output
versus response time) for haptic arrayed actuation technologies.
Presently, we can use computer-controlled protocols to actuate
individual cylinders in a 3 × 3 array. The toughness and compli-
ance of the materials we use in our device (i.e., silicone and LM)
builds upon lessons learned from previous microcombustion work,
avoiding the pitfalls of tribological wear and thermal degradation
(29). The simplicity of our system architecture gives it potential to
be far less expensive than currently available refreshable braille
displays (SI Appendix, Design for Scale).
Core to this system’s potential is the elimination of electro-

mechanical fluid control components. The self-quenching be-
havior of flames at small scales allows us to design a valveless,

electronically controlled FEA. It is for this reason that we can
reduce the individual actuator footprint and pack actuators more
closely. Our reported array prototype has 3-mm diameter cylin-
ders at a 4-mm pitch; we also have preliminary data showing that
1-mm diameter operation is achievable for larger Φ (SI Appen-
dix, Fig. S5). Our device is naturally suited to haptics applications
because it can conform to complex body geometries. Though
combustion produces heat, continuous exhaustion and rapid mem-
brane expansion effectively reduces heat transfer to the cylinder walls,
diminishing any device heating over long periods of use. If we use
our concept in stretchable electronics applications, the compo-
nents themselves will undergo stretching, bending, and twisting (SI
Appendix, Fig. S1). Our piercing spark gap electrode wires, then,
are subject to unwanted contact and misalignment. Wicking small
amounts of epoxy or ultraviolet-curable resin between the elec-
trodes can effectively bond them to the PDMS substrate and en-
sure robust spark gap spacing.
In this work, we trigger actuation with sparks because they allow

fast actuation frequencies and therefore, higher tactile bandwidths.
While miniature HV boost converters can continuously produce
over 10 kV with a power draw of ∼500 mW, producing HV electric
breakdown requires relays that are generally bulkier and costlier
than standard switching components (SI Appendix, Spark Demultiplex
Control Electronics). If we can reduce the breakdown voltage to below
1.5 kV, we will also substantially reduce relay size and cost. As there is
currently little commercial need for kV-level demultiplexing, recent
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Fig. 3. Design for individually addressable, high-density arrays of soft actuators. (A) Arrayed actuator design is compliant (SI Appendix, Fig. S1) and bio-
compatible. (Scale bar: 15 mm.) (B) An exploded view visualizes the layer-by-layer device architecture. Array cylinder electrode details can be found in SI
Appendix, Fig. S3. (C) High-speed images show individual operation of different actuators (Movie S5). Two-dimensional diagram of HV demultiplexing traces
given in righthand corners. (Scale bar: 5 mm.) (D) A tactile display application was demonstrated with an elementary magnetic latching pin array placed
directly above membranes. The pins rest in a steel machined plate (SI Appendix, Fig. S10). Separate actuation procedures are high-speed recorded, spelling
“CH4” in self-reference to the methane which powers this system (Movie S6). All demonstrations were performed at Φ = 0.28. (Scale bar: 5 mm.)
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breakthroughs in semiconducting and piezoelectric technologies
might soon produce more compact solutions (70–72). Resistive
and optical MEMS microheaters typically used in on-chip gas
sensors should be evaluated for their potential to trigger com-
bustion since they are known to sustain high temperatures (>1,000
°C) and have response times of about 10 ms to 100 ms (73, 74).
Novel HV pyroelectric materials may also serve as future compact
spark generators (72). Lastly, manipulating the gaseous dielectric
breakdown strength by varying reactant species concentrations can
provide a means to chemically control actuation at constant
electrode tension. The breakdown strengths Ub of atmospheric
oxygen and methane between electrodes separated by 1 mm are
Ub,O2 ∼1 kV and Ub,CH4 ∼5 kV, respectively (75, 76).
While our actuator has a low stroke efficiency (ηs = 0.71%, SI

Appendix, Actuator Stroke Efficiency), our reported mechanical
performance is excellent for the purposes of microactuation; the
amount of chemical energy and the reaction rate of combustible fuels
at microliter volumes compensate for its low efficiency. Currently,
state-of-the-art batteries have energy densities 10 to 100 times lower
than hydrocarbons (77). Hydrocarbons are surpassed in specific
energy only by some radioactive elements and antimatter (26, 78).
Furthermore, to make this device portable, we can use liquid fuels
(e.g., butane) and possibly on-board oxygen concentration to
provide days of use before refueling (79).
We acknowledge that some may find the thought of being so

close to combustible chemicals unsettling, yet we note that billions
of liquid butane lighters have rested in people’s front pockets since
the 1800s, and most every driver willingly sits within a few feet of
continuous cyclic combustion reactions, only slightly farther away
from gallons of gasoline. With a full-page refreshable braille tablet
(SI Appendix, Design for Scale), it would take a person ∼106 page
refreshes (using all possible actuators for each refresh) to release
the same amount of chemical energy stored in one 15-gallon tank
of gasoline. Furthermore, the lithium–ion battery has shown the
potential to be unsafe when mismanufactured (80). We do not op-
timize our preliminary system for efficiency; designers can optimize
chamber geometry, gas composition, and membrane properties to use
the least fuel for particular applications.
We believe that this system is a strong candidate for powering

many technologies beyond haptics. This actuator can be integrated
with small power transmission components to make microrobots
move quickly and can sit beneath microfluidic devices as simply
distributed micropumps for untethered soft machine operation.
Antagonistic pairs of actuators could replace small solenoid valves
to compactly control higher degree-of-freedom FEAs. For wear-
able applications, the current array configuration could be scaled
to reproduce some transient tactile sensations like wind, rain-
drops, or a small insect scuttling about one’s body.

Materials and Methods
Fabrication. We used soft lithography with three-dimensional, or 3D-printed
(Stratasys Objet30 Scholar, VeroBlue photopolymer) molds to produce simple,
stacked-layer device prototypes. The layer substrate is molded PDMS (Electron
Microscopy Sciences). Molding processes can be replicated at smaller scales
with cleanroommicrofluidic techniques. The membranes were made by doctor
blading Ecoflex 00–30 (Smooth-On, Inc.) onto glass plates. The membrane
shear modulus μ = 11 kPa was calculated from previously obtained Ecoflex
00–30 tension test data (81). Either EGaIn (Sigma-Aldrich) or liquid gallium was
used for electric traces and electrodes, with no appreciable difference in
performance. Liquid gallium electrode traces remained in liquid phase for
months after experiments and did not show any appreciable degradation (82).
Premixed methane–oxygen gas fueled all combustion processes.

Experiments. We used a Phantom Miro 310 Lab video camera with a macro
zoom lens to obtain all visual data. Single actuation events were recorded at
26,000 frames per second (fps). Estimates of time-dependent membrane vol-
ume, membrane stretch, and center displacement were calculated with custom
MATLAB image analysis scripts (SI Appendix, Experimental Image Processing).

Actuator frequency response experiments were performed at sparking
frequencies between 0.1 Hz to 1.2 kHz with 1.2 and 2 mL · min−1 flow rates,
both at Φ = 0.28. Sparks were generated with a function generator con-
nected to an HV amplifier (TREK Model 50/12). Sparks were produced with
positive-bias square waves. The spark duty cycle was increased from 0.5% to
20% to maintain spark persistence at higher frequencies. Small wires were
connected to LM electrodes to reduce the electrode gap. Membrane center
displacements were measured with a laser displacement sensor (LTS-050–10,
MTI Instruments). Additional details are provided in SI Appendix, Experi-
mental Frequency Response Analysis.

We confirmed individual actuator function bymanually switching HV relay
(COTO Technology) combinations, igniting all nine cylinders, recording their
displacements at 10,000 fps. Both a miniature HV module (EMCO Q20-5, XP
Power) and an HV amplifier (Model 50/12, TREK, Inc.) were used to generate
the input breakdown voltages. An Arduino Uno was programmed to control
HV relays and produce actuation sequences in the latching pin array. Tactile
display demonstrations were recorded at 18,000 fps.

Simulations. The LFP model was developed in Python using Cantera version
2.4.0. The LFSI model was developed in Mathematica 12.1. Details about
theory and numerics are provided in SI Appendix, Laminar Flame Propaga-
tion Model (LFP) and Linearized Fluid-Structure Interaction Model (LFSI).

Data Availability. Raw experimental data and simulation scripts have been
deposited in Figshare (https://doi.org/10.6084/m9.figshare.15169077).
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